
Inxpect MSK-101-POE Rest API
Version: 1.0.0

Inxpect SPA

Abstract

This document describes the Rest API provided by MSK-101-POE
sensor

Contents
1 Overview 3

2 Update process 3

3 APIs 5
3.1 /detectionStatus (GET) . 5

3.1.1 Returned value . 6
3.2 /alarmStatus (GET) . 6

3.2.1 Returned value . 6
3.3 /sensorConfiguration (GET and PUT) 8

3.3.1 Configuration object encoding 8
3.4 /sensorPositionStatus (GET) 11

3.4.1 Returned value . 11
3.5 /sensorInfo (GET) . 11

3.5.1 Returned value . 11
3.6 /calibrationStatus (PUT) . 12

3.6.1 Input argument . 12
3.6.2 Return value . 12

3.7 /calibrationData (GET) . 13
3.8 /installationConfigurations (GET) 13

1

CONTENTS CONTENTS

3.8.1 Returned value . 13
3.9 /netSettings (GET and PUT) 14

3.9.1 Configuration encoding 14
3.10 /changePassword (PUT) . 15

3.10.1 Password encoding . 15
3.10.2 Return value . 15

3.11 /comBoardName (GET and PUT) 15
3.11.1 Name encoding . 16
3.11.2 Return value . 16

3.12 /login (PUT) . 16
3.12.1 Password encoding . 16
3.12.2 Return value . 16

3.13 /logout (PUT) . 16
3.13.1 Return value . 16

3.14 /sensorReset (PUT) . 17
3.14.1 Return value . 17

3.15 /comboardReset (PUT) . 17
3.15.1 Return value . 17

3.16 /updateToken (GET) . 17
3.16.1 Return value . 17

3.17 /eventLog (GET) . 18
3.17.1 Return value . 18

3.18 /startProcessUpdate (PUT) 19
3.18.1 Argument encoding . 19

3.19 /startManifestUpdate (PUT) 19
3.19.1 Return value . 19

3.20 /chunkManifestUpdate (PUT) 19
3.21 /stopManifestUpdate (PUT) 20

3.21.1 Return value . 20
3.22 /startFileUpdate (PUT) . 20

3.22.1 Return value . 20
3.23 /chunkFileUpdate . 20
3.24 /stopFileUpdate . 21

3.24.1 Return value . 21
3.25 /stopProcessUpdate . 21

3.25.1 Argument . 21
3.25.2 Return value . 21

Inxpect SPA, all rights reserved 2

2 UPDATE PROCESS

1 Overview
This document describes the MSK-101-POE Rest API interface. This device
has an ethernet outlet that can be used to power the device (POE) and to
communicate with it. Communication is implemented by an HTTPS Rest
API that allows reading/writing the device configuration and retrieve the
device status.

The device communicates over a secure HTTP connection (HTTPS)
and the client must install the proper certificate which is available at
(https://www.inxpect.com/security/tools)

Most of the operation on the device are restricted to authenticated clients.
A client needs to login to get authenticated. In order to login a client shall
provide the device password and will get a session token that shall be added
to any http call as an header in the form: Authorization: Bearer token
where token is the verbatim token as received on login success.

Since tokens have an expiration date which is unknown the client must be
ready to handle the unauthorized error (HTTP 403). If any call fails with
such an error the client shall login and repeat the original call.

2 Update process
The MSK-101-POE sensor allows upgrading all its software components OTC
(over the cable). The upgrade process is not trivial as there are several
components in the system with their own software on board. On top of this
the firmware is signed to guarantee system security and this introduces some
further complexity. Update packages are available as IFW files which are
distributed by Inxpect and cannot be created or maniupulated by anyone else.
An IFW file is just a zipped file containing the files and metainformation to
upgrade one system component. An IFW file MUST contain a special file
named package.json which describes the whole package. This JSON object
has the following structure:

{"f": "CBPOE_v1209.bin", "v": "1.209", "df": 2,
"dst": 1, "vc": 1209, "dm": 1}

the “dst” field specifies the target subcomponent for which this was is meant.
The system has three different components which can be upgraded:

Inxpect SPA, all rights reserved 3

2 UPDATE PROCESS

• MSK-101 core system
• Communication board
• Configuration web interface (web server)

If the destination is either MSK-101 core system or the communication board
then the “f” field specifies the file with the device firmware. If the destination
is the web server then “f” contains the name of another json file describing the
multi file web server update (this file is named contents.json). Since updating
the whole server may take some time there is a mechanism to verify what
really needs to be updated. The client performing the update shall GET the
following resource on the device:

msk101poe-xxxxx.local/contents.json

contents.json looks like this:

{"dm": 0, "fA": [{"f": "static/favicon.ico.gz",
"d": "B75U5szUcv12LI0xB2qY81m84aH+M4/FD3odmQQ4eLo="},

...],
"df": 0, "v": "1207", "vc": 1207}

The file contains an array (“fA”) with the list of files for the web server. Each
file is described by its name and by its fingerprint. The contents.json retrieved
from the device can be compared to the one stored in the IFW package and
only the files whose fingerprint is different shall be sent to the device. The
ones whose fingerprint is unchanged can be skipped.

The other fields of the package.json are the following ones:

• v is the version of the component (string value)
• vc is the version of the component (numeric value suitable for compari-

son)
• dm is the device mode this file is meant for
• df is the device family this file is meant for

For any file that is meant for the device there must be a corresponding file
with the same file name and the extra extension “.mf” which is its meta
information. For example:

CBPOE_v1209.bin
CBPOE_v1209.bin.mf
package.json

Inxpect SPA, all rights reserved 4

3 APIS

In this example we have the package.json descriptor and one file
(CBPOE_v1209.bin) with its corresponding meta information. The package
can contain any number of files for the device but they must belong to the
same component.

Once a client has unpacked and read the IFW file it can start the actual
update process which is composed by the following steps:

1. Start an update session for a given component (e.g. core sensor firmware)

2. Start update file meta information

3. Send meta information chunks (one by one)

4. Stop update meta information

5. Start sending file data

6. Send data chunks (one by one)

7. Stop sending data

8. Stop update session

Steps 2-7 must be repeated for each file to send.

3 APIs
The APIs provided by MSK-101-POE are listed in this section. Each API is
described with its parameters and generated output. APIs arguments and
results are encoded as JSON objects.

3.1 /detectionStatus (GET)
This endpoint allows retrieving the information about the latest targets
detected by the sensor. When the sensor is not detecting any target it returns
the latest detected targets so the information is never lost. The elapsedTime
and acqIdx fields can be used to discard information that has already been
processed.

Inxpect SPA, all rights reserved 5

3.2 /alarmStatus (GET) 3 APIS

3.1.1 Returned value

{ "fps":<I:value>, "acqIdx":<I:value>,
"elapsedTime":<I:value>,
"targets":[{"distance":<I:value>,

"rcs":<I:value>,
"id":<I:value>

}
]

}

Where:

• fps is the frame per seconds that the sensor is able to process. Under
normal conditions this value is greater or equal to 100

• acqIdx is the frame counter (a frame corresponds to the acquisition of
the radar signal)

• elapsedTime how long has passed since these targets have been detected
• targets is an array of detected moving targets. Each target is described

by the following info:
– distance is the distance in [mm] from the sensor
– rcs is a measure of the “size” of the detected target. For calibrated

sensor this value is on average greater than 1000 when the target
is the object used for calibration or anything bigger than that

– id is the target identifier. The sensor tracks targets and assign
them an ID. This identifier may change if a target is lost

3.2 /alarmStatus (GET)
This endpoint allows retrieving the latest alarm status and the last status
when an alarm occurred. When the sensor is not detecting any alarm it
returns the latest detected targets so the information is never lost. The
elapsedTime and acqIdx fields can be used to discard information that has
already been processed.

3.2.1 Returned value

{ "fps":<I:value>, "acqIdx":<I:value>, "elapsedTime":<I:value>,
"alarms": [{"type":<I:value>,

Inxpect SPA, all rights reserved 6

3.2 /alarmStatus (GET) 3 APIS

"cause":<I:value>,
"target": {"distance": <I:value>,

"rcs": <I:value>
}

}
]

}

Where:

• fps is the frame per seconds that the sensor is able to process. Under
normal conditions this value is greater or equal to 100

• acqIdx is the frame counter (a frame corresponds to the acquisition of
the radar signal)

• elapsedTime how long has passed since these targets have been detected
• alarms is an array with the latest alarms. Each alarm is described by

the following fields:
– type specifies the type of the alarm. It can be:

∗ 1 for an alarm generated by a detected target
· 2 for an alarm generated by a fault situation
· 3 for an alarm generated by a tampering situation

– cause specifies the root cause of the alarm.
If the alarm is triggered by a moving target then this value can be:

∗ 4 if the alarm has been generated in the alarm area
∗ 2 if the alarm has been generated in the pre-alarm area

If the alarm is generated by a tampering situation its value can be:
∗ 2 if the sensor has been moved
∗ 3 if the sensor has been masked

If the alarm is generated by a fault situation its value can be:
∗ 100 for input voltage out of range
∗ 101 for detection error
∗ 102 for security error
∗ 103 for HW head fault
∗ 104 for masking
∗ 105 for motion detector not responding
∗ 106 for masking not ready
∗ 107 for corrupted storage
∗ 1001 for communication fault

– target is an array of detected moving targets. Each target is

Inxpect SPA, all rights reserved 7

3.3 /sensorConfiguration (GET and PUT) 3 APIS

described by the following info:
– distance is the distance in [mm] from the sensor
– rcs is a measure of the “size” of the detected target. For calibrated

sensor this value is on average greater than 1000 when the target
is the object used for calibration or anything bigger than that

– id is the target identifier. The sensor tracks targets and assign
them an ID. This identifier may change if a target is lost

3.3 /sensorConfiguration (GET and PUT)
Handles the sensor configuration. Most of the values are expressed as integer
numbers and shall not be restricted to a subrange. The JSON definition here
below shows the typical range just for convenience but there is no guarantee
these ranges won’t change in the future.

3.3.1 Configuration object encoding

The configuration object is returned when the endpoint is read via a GET
operation and it is stored on the device when it is PUT.

{"configuration":{"alarmDistance":<I:[minDist,maxDist]>,
"preAlarmDistance":<I:[minDist,maxDist]>,
"alarmSensitivity":<I:[128:228]>,
"mountHeight":<I:[1000-4000]>,
"mountElevation":<I:[+90,-90]>,
"mountRotation":<I:[-180,+180]>,
"mountAzimuth":<I:[-180,+180]>,
"calibrationCoefficient":<I:[300,50000]>,
"ledMode":<I:enumeration>,
"channel":<I:[0-14]>,
"configurationsCount":<I>,
"country":<String:[3 character ISO code]>,
"antiMaskingMode":<I:enumeration>,
"antiMaskingExitMode":<I:enumeration>,
"antiTamperMode":<I:enumeration>,
"antiTamperExitMode":<I:enumeration>,
"numConflictingSensors":<I:[0,50]>,
"ssMode":<I:enumeration>,

Inxpect SPA, all rights reserved 8

3.3 /sensorConfiguration (GET and PUT) 3 APIS

"ssMinDist":<I:[minDist,maxDist]>,
"ssMaxSize":<I>,
"ssNumMaxZones":<I>,
"ssManualZones":[{"min":<I>,"max":<I>}]

},
"version":<I>

}

Where:

• alarmDistance: the length of the alarm area expressed in millimiters
• preAlarmDistance: the length of the pre-alarm area expressed in millim-

iters. This value must be greater or equal to the alarmDistance. In case
there is no pre alarm then this value shall be equal to the alarmDistance

• alarmSensitivity: defines the level of pet tolerance. Higher values
correspond to decreasing sensibility and increasing pet tolerance. The
value of this parameter is a byte expressing a percentage [0-100] with the
first bit set to 1. In other words the value is: percentage | 0x80 where
percentage is a value in the [0-100] range. When the percentage is set
to 75 (parameter is 75 | 0x80) the sensor triggers an alarm for a target
whose size is comparable to the one used during calibration. Percentage
values greater than 75 mean the sensor is less sensible and triggers
alarms for targets bigger than the one that calibrated the sensor.

• mountHeight: defines the installation height in millimiters
• mountElevation: defines the sensor pitch. Usually this value is negative

as negative values mean the sensor points downward. Values close to 0
mean the sensor is pointing parallel to the underlying ground.

• mountRotation: defines the sensor rotation. Values close to 0 degrees
implies the sensor antenna is horizontal (volumetric mode) while values
close to 90 degrees imply the sensor antenna is vertical (barrier mode)

• mountAzimuth: this value specifies the installation azimuth
• calibrationCoefficient: this value is used to calibrate the sensor in the

environment where it operates. The correct value can be set using
the automatic procedure (see the calibrationStatus api) or it can be
manually set.

• ledMode: defines the led mode behavior.
– 0 for normal led mode (red for alarm condition, blue for detected

targets but no alarm yet, blinking red for pre alarm)
– 1 for disabled mode

Inxpect SPA, all rights reserved 9

3.3 /sensorConfiguration (GET and PUT) 3 APIS

• channel: this parameter can be used to avoid interferences among
sensors working in the same environment. 0 means this sensor is alone,
1 corresponds to channel A, 2 to channel B and so on

• numConflictingSensors: number of conflicting sensors in this environ-
ment. Each of them shall have a different channel to avoid interferences

• antiMaskingMode: specifies the anti masking mode. The parameter can
take these values:
– 0 for normal mode
– 1 for disabled mode
– 2 for aggressive mode (in this case anti masking is more sensible

but it can generate false masking conditions if the sensor is exposed
to direct rain)

• antiTamperMode: specifies the anti tamper mode. The parameter can
take these values:
– 0 for disabled mode
– 2 for tamper on sensor moved mode

• country: the ISO3 code of the country where the sensor operates
• configurationsCount: this value is read only and counts the number of

times the sensor has been configured. The value is returned when the
configuration is fetched (GET) and it shall not be present when the
configuration is stored (PUT). This value is reset on factory restore.

• version: the configuration format version. The value is returned when
the configuration is fetched (GET) and it shall not be present when the
configuration is stored (PUT).

• ssMode: semi statics mode. It can take one of the following values:
– 0 for disabling semi statics
– 1 for automatic mode 1 (i.e. max 2 semi static objects whose

position is automatically found by the sensor and with a max size
of 1.5 meters)

– 2 for automatic mode 2 (i.e. max 3 semi static objects whose
position is automatically found by the sensor and with a max size
of 2.5 meters)

– 3 for semi automatic mode (i.e. the position of semi statics is
automatically found by the sensor but the max number and size is
set by the user)

– 4 for manual mode (everything is controlled by the user)

When the configuration is saved the caller can specify only the fields that

Inxpect SPA, all rights reserved 10

3.4 /sensorPositionStatus (GET) 3 APIS

must change. All the unspecified fields will hold their current value. On
configuration save the operation returns a JSON object like the following:

{"errorCode":code}

An error code 0 means no error (in that case the errorDesc is not present)

3.4 /sensorPositionStatus (GET)
This endpoint returns current values of elevation and rotation

3.4.1 Returned value

{"elevation":<I>, "rotation": <I>}

Where:

• elevation is the sensor current pitch. Negative angles mean the sensor
is pointing downward

• rotation is the sensor current rotation. Values around 0 mean the sensor
is horizontal (volumetric) while values around 90 mean the sensor is
vertical (barrier)

3.5 /sensorInfo (GET)
Returns the sensors info (e.g. model, family, fw version)

3.5.1 Returned value

{"sensorInfo":{"model":<I>,"family":<I>,
"fwVersion":<I>,
"deviceId":<I>,
"minDistance":<I>,
"maxDistance":<I>,
"minAngle":<I>,"maxAngle":<I>},

"comBoardInfo":{"model":<I>,
"family":<I>,
"fwVersion":<I>,
"deviceId":<I>,
"pinResetRequired":<I>}

Inxpect SPA, all rights reserved 11

3.6 /calibrationStatus (PUT) 3 APIS

}

The sensor info is split between the actual radar sensor and the communication
board which is used to communicate over ethernet. For the sensor the following
info is available: - model: the device model (must be 1 for current version of
MSK-101-POE) - family: the device family (must be 5 for MSK-101-POE
devices) - fwVersion: the firmware version - deviceId: the device unique id -
minDistance: the minimum distance from the sensor at which a target can be
detected - maxDistance: the maximum distance from the sensor at which a
target can be detected - minAngle: the minimum angle from the sensor point
of view at which a target can be detected - maxAngle: the maximum angle
from the sensor point of view at which a target can be detected

The span between minAngle and maxAngle defines the sensor FOV

For the communication board the following info is available: - model: the
com board model (must be 1 for the ethernet board embedded in the MSK-
101-POE) - family: the com board family (must be 5 for the ethernet board
embedded in the MSK-101-POE) - fwVersion: fw version of the communication
board - deviceId: unique com board device id - pinResetRequired: specifies if
the com board has a pin/password which the user needs to change

3.6 /calibrationStatus (PUT)
This endpoint allows starting/stopping/saving a sensor calibration.

3.6.1 Input argument

{"operation":<I:[0=stop,1=start standard,2=start zone based,3=save]>}

3.6.2 Return value

The API returns the status of the operation performed with an object with
the following format:

{"errorCode":<I:[error code, where 0 means no error]>}

When the operation is “stop” the error code signals both blocking errors and
warnings. In particular: - 0 means everything is OK - 223 means calibration
data is poor, it is usable but the info is not very good - any other value means

Inxpect SPA, all rights reserved 12

3.7 /calibrationData (GET) 3 APIS

the calibration procedure failed and the calibration data cannot be saved on
sensor

3.7 /calibrationData (GET)
This endpoint allows retrieving information on the latest calibration performed
(the information is not persisted on sensor so it does not survive reboot cycles).
The returned JSON object contains data collected during calibration.

Return value

{"version":<I:calib data version>,"value":<I>,"mse":<I>,"peaks":[<I>]}

Where: - version is the data format version - value is the calibration coefficient
as it has been computed - mse (Mean Square Error) gives an indication of
how good the calibration was. Lower values indicate a good calibration -
peaks is raw data collected during the calibration process. The meaning of
these values is intentionally not explained here because the purpose is only to
collect data that can be sent to the Inxpect engineering team for debugging
purposes

3.8 /installationConfigurations (GET)
This endpoint allows retrieving the supported and optimal sensor configura-
tions.

3.8.1 Returned value

{"installations": [{"minDistance": <I>,"maxDistance": <I>,
"minElevation": <I>,"maxElevation": <I>,
"minHeight": <I>,"maxHeight": <I>,
"orientation": <I>
},{...}]

}

Where installations is an array with the supported and optimal configurations
- minDistance is the minimum distance at which this configuration can detect
targets (value in centimeters) - maxDistance is the maximum distance
up to which this configuration can detect targets (value in centimeters) -
minElevation is the minimum elevation for this configuration to apply (value

Inxpect SPA, all rights reserved 13

3.9 /netSettings (GET and PUT) 3 APIS

is positive when sensor is pointing downward) - minElevation is the
maximum elevation for this configuration to apply (value is positive when
sensor is pointing downward) - minHeight is the minimum height for this
configuration to apply (value in centimeters) - maxHeight is the minimum
height for this configuration to apply (value in centimeters) - orientation
is the orientation for this configuration to apply (0 for horizontal and 1 for
vertical)

For example we could have the following configuration:

{"minDistance": 250,"maxDistance": 1600,
"minElevation": 12,"maxElevation": 18,
"minHeight": 175,"maxHeight": 224,
"orientation": 0

}

This configuration specifies that the sensor can be installed with an height in
the [175,224] cm range, with an inclination in the [-12,-18] degrees range, and
horizontal orientation (volumetric). In this configuration the detection range
is in the [250,1600] cm range.

3.9 /netSettings (GET and PUT)
This endpoint allows reading/writing the network configuration for the device.

3.9.1 Configuration encoding

The configuration is encoded into a JSON object like this:

{"netConfiguration":<I>,
"staticAddress":<String:address>, "subnet":<String:address>,
"gateway":<String:address>, "curNetConfiguration":<I:[bitMask]>,
"curHostAddress":<String:address>, "curSubnet":<String:address>,
"curGateway":<String:address>

}

Where netConfiguration is a bitmask where:

• bit 0 toggles dhcp
• bit 1 toggles name resolution
• bit 2 toggles auto IP

Inxpect SPA, all rights reserved 14

3.10 /changePassword (PUT) 3 APIS

For example a value of “2” for the netConfiguration means that the sensor will
use a static IP address (both dhcp and auto ip are off) and name resolution
via mDNS and NetBIOS is active. When the sensor is configured for a
static IP address the user can specify the address using the “staticAddress”
field. If this field is not specified the sensor fallbacks to 192.168.0.50. If the
netConfiguration field has the value “7” the sensor is configured to use DHCP
first and if this fails it will revert to Auto IP which is guranteed to find a
valid IP address.

The fields prefixes witht “cur” (e.g. curNetConfiguration) specifies the actual
values and are not necessarly identical to the configuration saved by the user.
Suppose for example the sensor was configured with DHCP but the sensor is
unable to get an IP. In this case after a timeout the sensor reverts to Auto
IP which guarantees the sensor will get an IP assigned.

When the configuration is stored (PUT) the fields “curNetConfiguration”,
“curHostAddress”, “curSubnet” and “curGateway” MUST be omitted. The
following object is returned as response:

{"errorCode":<I:code>}

An error code 0 means the operation was successfull.

3.10 /changePassword (PUT)
This endpoint allows setting the device password.

3.10.1 Password encoding

The new password is encoded into a JSON object like this:

{"oldPassword":<String>, "newPassword":<String>}

3.10.2 Return value

{"errorCode":<I:code>}

An error code 0 means the operation was successfull.

3.11 /comBoardName (GET and PUT)
This endpoint allows reading/writing the device network name.

Inxpect SPA, all rights reserved 15

3.12 /login (PUT) 3 APIS

3.11.1 Name encoding

The new network name is encoded into a JSON object like this:

{"name":<String>}

3.11.2 Return value

{"errorCode":<I:code>}

An error code 0 means the operation was successfull.

3.12 /login (PUT)
This endpoint allows logging into the device. Logging in is allows creating
a session (token based) so that subsequent operations authenticate via the
given token.

3.12.1 Password encoding

{"password":<String>}

3.12.2 Return value

{"errorCode":<I:code>}

An error code 0 means the operation was successfull. A special error code
with value 100 is returned when the operation was successful but the password
is the default one. All the next requests will fail until the password is not
changed.

3.13 /logout (PUT)
This endpoint allows logging out from the device. Once a client has logged
out its session is no longer valid and a new login is required.

3.13.1 Return value

{"errorCode":<I:code>}

An error code 0 means the operation was successfull.

Inxpect SPA, all rights reserved 16

3.14 /sensorReset (PUT) 3 APIS

3.14 /sensorReset (PUT)
This endpoint allows resetting the sensor configuration to its factory defaults.
The configuration that gets changed is the sensor configuration while the
network settings, the password and the com board name are not changed.

3.14.1 Return value

{"errorCode":<I:code>}

An error code 0 means the operation was successfull.

3.15 /comboardReset (PUT)
This endpoint allows resetting the communication board configuration to
its factory defaults. The configurations that gets changed are the network
settings, the password and the com board name while the sensor configuration
is not changed.

This command is also available without authentication for 20 sec-
onds after a startup when the board has an active connection

3.15.1 Return value

{"errorCode":<I:code>}

An error code 0 means the operation was successfull.

3.16 /updateToken (GET)
This endpoint allows retrieving a new authentication token

3.16.1 Return value

{"errorCode":<I:code>, "token":<String>}

Where errorCode is 0 on success and token is the new token to be used in
subsequent calls.

Inxpect SPA, all rights reserved 17

3.17 /eventLog (GET) 3 APIS

3.17 /eventLog (GET)
This endpoint returns the list of the latest alarms. For each alarm the sensor
tracks detailed information at the beginning of the event and summarized
information for the remaining time. An alarm event gets opened as soon
as the sensor triggers an alarm condition and it is closed after 3 minutes
where the alarm is OFF. If an alarm starts with a given type (e.g. movement
detected) and then switches to another type (e.g. masking) then two different
events are stored and the first one terminates as soon as the second one starts.

3.17.1 Return value

{ "events": [{"type": <I:[1-3]>,"elapsedTime": <I:value>,
"duration": <I:value>,"cause": <I:value>

},
{ "type": <I:[1]>,
"elapsedTime": <I:value>,
"duration": <I:value>,
"minDistance": <I:value>,
"minRcs": <I:value>,
"maxDistance": <I:value>,
"maxRcs": <I:value>,
"targets": [{"distance": <I:value>,

"rcs": <I:value>}
]

}
]

}

Where:

• type and cause values are the same described in alarm status
• elapsedTime is the time elapsed since the event start (in seconds)
• duration specifies how long the event lasted
• minDistance, minRcs, maxDistance, maxRcs are present only if the

evtType is a presenceEvent. Distances are in mm and their meaning is
the following:
– minDistance is the minimum distance at which a target was de-

tected in this event

Inxpect SPA, all rights reserved 18

3.18 /startProcessUpdate (PUT) 3 APIS

– minRcs is the minimum rcs a target had in this event
– maxDistance is the maximum distance at which a target was

detected in this event
– maxRcs is the maximum rcs a target had in this event

• targets are the values of distance and rcs between the alarm event. They
are present only if the evtType is a presenceEvent. Distances are in
mm

3.18 /startProcessUpdate (PUT)
This endpoint is used to notify the sensor about the beginning of an update
session. An update session is specific for a device sub component (core sensore,
communication board or web server).

3.18.1 Argument encoding

{“dst”:<I:[0: sensor, 1: comBoard, 2: server]>}

3.19 /startManifestUpdate (PUT)
This endpoint is used to notify the sensor about the beginning of a manifest
update. The answer contains the chunk size that must be used to transfer
data chunks

3.19.1 Return value

{ “errorCode”:, “maxChunkSize”:}

Where errorCode is 0 on success and in this case maxChunkSize is populated
with the max dimension a chunk shall have.

3.20 /chunkManifestUpdate (PUT)
This endpoint shall be used to transmit a chunk of meta information. The
max size of a chunk is returned by startManifestUpdate.

This request needs 2 HTTP special headers + X-Update-Filename: + Content-
Range: bytes -/

Inxpect SPA, all rights reserved 19

3.21 /stopManifestUpdate (PUT) 3 APIS

Binary data (loaded from IFW meta information) shall be placed in the
request body.

3.21 /stopManifestUpdate (PUT)
This endpoint informs the sensor that the metainformation has been com-
pletely transmitted.

3.21.1 Return value

{ “errorCode”:}

Where errorCode is 0 on success

3.22 /startFileUpdate (PUT)
This endpoint is used to notify the sensor about the beginning of an item
update. When the component being updated is either the core sensor or the
communication board the item is actually the firmware image for the sub
device. If the component being updated is the web server then the item can
be any of the file in the web server tree (the web server has several files)

3.22.1 Return value

{ “errorCode”:, “maxChunkSize”:}

Where errorCode is 0 on success and in this case maxChunkSize is populated
with the max dimension a chunk shall have.

3.23 /chunkFileUpdate
This endpoint shall be used to transmit a chunk of binary data. The max
size of a chunk is returned by startFileUpdate.

This request needs 2 HTTP special headers + X-Update-Filename: + Content-
Range: bytes -/

In the body of the request must be placed binary data (the chunk must be of
the size specified in /startFileUpdate)

Inxpect SPA, all rights reserved 20

3.24 /stopFileUpdate 3 APIS

3.24 /stopFileUpdate
This endpoint informs the sensor that a file content has been completely
transmitted.

3.24.1 Return value

{ “errorCode”:}

Where errorCode is 0 on success

3.25 /stopProcessUpdate
This endpoint informs the sensor that an update process has completed. The
client can specify if the update shall be terminated by force (in this case the
update is aborted)

3.25.1 Argument

{“force”:}

A non zero value for the “force” parameter means the process shall be aborted

3.25.2 Return value

{ “errorCode”:}

Where errorCode is 0 on success

Inxpect SPA, all rights reserved 21

	Overview
	Update process
	APIs
	/detectionStatus (GET)
	Returned value

	/alarmStatus (GET)
	Returned value

	/sensorConfiguration (GET and PUT)
	Configuration object encoding

	/sensorPositionStatus (GET)
	Returned value

	/sensorInfo (GET)
	Returned value

	/calibrationStatus (PUT)
	Input argument
	Return value

	/calibrationData (GET)
	/installationConfigurations (GET)
	Returned value

	/netSettings (GET and PUT)
	Configuration encoding

	/changePassword (PUT)
	Password encoding
	Return value

	/comBoardName (GET and PUT)
	Name encoding
	Return value

	/login (PUT)
	Password encoding
	Return value

	/logout (PUT)
	Return value

	/sensorReset (PUT)
	Return value

	/comboardReset (PUT)
	Return value

	/updateToken (GET)
	Return value

	/eventLog (GET)
	Return value

	/startProcessUpdate (PUT)
	Argument encoding

	/startManifestUpdate (PUT)
	Return value

	/chunkManifestUpdate (PUT)
	/stopManifestUpdate (PUT)
	Return value

	/startFileUpdate (PUT)
	Return value

	/chunkFileUpdate
	/stopFileUpdate
	Return value

	/stopProcessUpdate
	Argument
	Return value

